Application of fuzzy logic in automated cow status monitoring.

نویسندگان

  • R M de Mol
  • W E Woldt
چکیده

Sensors that measure yield, temperature, electrical conductivity of milk, and animal activity can be used for automated cow status monitoring. The occurrence of false-positive alerts, generated by a detection model, creates problems in practice. We used fuzzy logic to classify mastitis and estrus alerts; our objective was to reduce the number of false-positive alerts and not to change the level of detected cases of mastitis and estrus. Inputs for the fuzzy logic model were alerts from the detection model and additional information, such as the reproductive status. The output was a classification, true or false, of each alert. Only alerts that were classified true should be presented to the herd manager. Additional information was used to check whether deviating sensor measurements were caused by mastitis or estrus, or by other influences. A fuzzy logic model for the classification of mastitis alerts was tested on a data set from cows milked in an automatic milking system. All clinical cases without measurement errors were classified correctly. The number of false-positive alerts over time from a subset of 25 cows was reduced from 1266 to 64 by applying the fuzzy logic model. A fuzzy logic model for the classification of estrus alerts was tested on two data sets. The number of detected cases decreased slightly after classification, and the number of false-positive alerts decreased considerably. Classification by a fuzzy logic model proved to be very useful in increasing the applicability of automated cow status monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Failure in the Hydraulic Lift Structures with Monitoring and Fuzzy Logic

There are several strategies for maintenance and repairing of devices in industry. However, they are still confronted with many uncertainties. A hydraulic lifting device after ten years of working in a technical center in Isfahan is faced with uncertainty in terms of reliability. Being able to know the reliability of pieces means predicting failure occurrences, which is accomplished by conditio...

متن کامل

Predicting Failure in the Hydraulic Lift Structures with Monitoring and Fuzzy Logic

There are several strategies for maintenance and repairing of devices in industry. However, they are still confronted with many uncertainties. A hydraulic lifting device after ten years of working in a technical center in Isfahan is faced with uncertainty in terms of reliability. Being able to know the reliability of pieces means predicting failure occurrences, which is accomplished by conditio...

متن کامل

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

A case study for application of fuzzy inference and data mining in structural health monitoring

In this study, a system for monitoring the structural health of bridge deck and predicting various possible damages to this section was designed based on measuring the temperature and humidity with the use of wireless sensor networks, and then it was implemented and investigated. A scaled model of a conventional medium sized bridge (length of 50 meters, height of 10 meters, and with 2 piers) wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of dairy science

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 2001